Comparison between supervised and unsupervised learning of probabilistic linear discriminant analysis mixture models for speaker verification
نویسندگان
چکیده
We present a comparison of speaker verification systems based on unsupervised and supervised mixtures of probabilistic linear discriminant analysis (PLDA) models. This paper explores current applicability of unsupervised mixtures of PLDA models with Gaussian priors in a total variability space for speaker verification. Moreover, we analyze the experimental conditions under which this application is advantageous, taking into account the existing limitations of training database sizes, provided by the National Institute of Standards and Technology (NIST). We also present a full derivation of the Maximum Likelihood learning procedure for PLDA mixture. Experimental results for a cross-channel NIST Speaker Recognition Evaluation (SRE) 2010 verification task show that unsupervised PLDA mixture is more effective than other state-of-the-art methods. We show that for this task a combination of a homogeneous i-vector extractor and a mixture of two Gaussian PLDA models is more effective than a cross-channel i-vector extractor with a single Gaussian PLDA. 2013 Elsevier B.V. All rights reserved.
منابع مشابه
Linear Regression for Speaker Verification
This paper presents a linear regression based backend for speaker verification. Linear regression is a simple linear model that minimizes the mean squared estimation error between the target and its estimate with a closed form solution, where the target is defined as the ground-truth indicator vectors of utterances. We use the linear regression model to learn speaker models from a front-end, an...
متن کاملUnsupervised Discriminative Training of PLDA for Domain Adaptation in Speaker Verification
This paper presents, for the first time, unsupervised discriminative training of probabilistic linear discriminant analysis (unsupervised DT-PLDA). While discriminative training avoids the problem of generative training based on probabilistic model assumptions that often do not agree with actual data, it has been difficult to apply it to unsupervised scenarios because it can fit data with almos...
متن کاملSpeaker Verification with D Adaptati
This paper presents methods for adapting models in a data fusion-based speaker verification system. The models that are used in the data fusion system are the neural tree network (NTN), dynamic time warping (DTW), and hidden Markov model (HMM). The models provide information based on discriminant information, distortion measurements, and probabilistic evaluation, respectively. The parameters of...
متن کاملFactor analysis of mixture of auto-associative neural networks for speaker verification
This paper introduces the theory of factor analysis of the mixture of Auto-Associative Neural Networks (AANNs) with application in speaker verification. First, we formulate the problem of learning a low-dimensional subspace in part of the mixture of AANNs parameter space, and subsequently derive the update equations by minimizing loss function of the mixture. Second, we apply this technique to ...
متن کاملSpherical Discriminant Analysis in Semi-supervised Speaker Clustering
Semi-supervised speaker clustering refers to the use of our prior knowledge of speakers in general to assist the unsupervised speaker clustering process. In the form of an independent training set, the prior knowledge helps us learn a speaker-discriminative feature transformation, a universal speaker prior model, and a discriminative speaker subspace, or equivalently a speaker-discriminative di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition Letters
دوره 34 شماره
صفحات -
تاریخ انتشار 2013